Aμ(x)=4πc∫d4x′G(x′,t′,x,t)jμ(x′)
where
jμ(x′)=ce∫dτvμ(τ)δ(4)(x′−rμ(τ))
and
G(x′,t′,x,t)=12πθ(ct−ct′)δ(4)[(x−x′)2]
Aμ(x)=4πc∫d4x′12πθ(ct−ct′)δ(4)[(x−x′)2]ce∫dτvμ(τ)δ(4)(x′−rμ(τ))
Aμ(x)=2e∫d4x′θ(ct−ct′)δ(4)[(x−x′)2]∫dτvμ(τ)δ(4)(x′−rμ(τ))
Aμ(x)=2e∫dτvμ(τ)∫d4x′θ(ct−ct′)δ(4)[(x−x′)2]δ(4)(x′−rμ(τ))
Aμ(x)=2e∫dτvμ(τ)θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]
where
ct′=r0(τ)
using the identity
δ(n)(f(x))=δ(n)(x)dfdx
in our case,
x=τ and
f(τ)=(x−rμ(τ))2
dfdτ=2(x−rμ(τ))(−vμ(τ))
=−2(x−r(τ))μvμ(τ)
substituting this in the above equation gives
Aμ(x)=2e∫dτvμ(τ)θ(ct−r0(τ))δ(4)(τ−τ0)−2(x−r(τ))μvμ(τ)
Aμ(x)=−e∫dτvμ(τ)θ(ct−r0(τ))δ(4)(τ−τ0)[(x−r(τ))⋅v(τ)]
Aμ(x)=−e[vμ(τ)[(x−r(τ))⋅v(τ)]]τ0
Aμ(x)=2e∫dτvμ(τ)θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]
dαAβ(x)=2e∫dτdα[vβ(τ)θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))dαδ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))ddxαδ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))ddxαdfdfδ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))dfdxαddfδ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))dfdxαddfdτdτδ(4)[(x−rμ(τ))2]]
=2e∫dτvβ(τ)θ(ct−r0(τ))dfdxαdτdfddτδ(4)[(x−rμ(τ))2]]
where
dfdτ=−2(x−r(τ))μvμ(τ)=−2(x−r(τ))⋅v(τ) and
dfdxα=2(x−r(τ))α
dαAβ(x)=2e∫dτ[2(x−r(τ))αvβ(τ)−2(x−r(τ))⋅v(τ)]θ(ct−r0(τ))ddτδ(4)[(x−rμ(τ))2]]
=−2e∫dτddτ[(x−r(τ))αvβ(τ)(x−r(τ))⋅v(τ)]θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]]
Fαβ=−2e∫dτddτ[(x−r(τ))αvβ(τ)−(x−r(τ))βvα(τ)(x−r(τ))⋅v(τ)]θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]]
is similar to
Aμ(x)=2e∫dτvμ(τ)θ(ct−r0(τ))δ(4)[(x−rμ(τ))2]
therefore, we can say that
Fαβ=−2e[(x−r)⋅v]ddτ[(x−r)αvβ−(x−r)βvα(x−r)⋅v]