ρ=Σaeaδ(r−ra)
or
de=ρdV
dxide=ρdxidV
dxide=ρdxidtdVdt
dxide=ρvidΩc
dxide=jidΩc
where
ji=(ρc,ρvi)
now, consider the term
∫ecAkdxk from the action term
∫ecAkdxk=∫1cρdVAkdxk
=∫1cρAkdxkdtdVdt
=∫1c2jkAkdΩ
substituting this in the action equation
S=−∫bamcds−∫baecAμdxμ−116πc∫badΩFμνFμν
S=−∫mcds−∫1c2jkAkdΩ−116πc∫dΩFμνFμν
δS=−∫mcdvμδxμ−∫1c2δjkAkdΩ−∫1c2jkδAkdΩ−116πc∫dΩδ(FμνFμν)
δ(FμνFμν)=2FμνδFμν
=2Fμνδ(dμAν−dνAμ)
=2Fμν(2δdμAν)
=4FμνdμδAν
=4dμ(FμνδAν)−4dμFμνδAν
δS=−∫mcdvμδxμ−∫1c2δjkAkdΩ−∫1c2jkδAkdΩ−116πc∫4(dμ(FμνδAν)−dμFμνδAν)dΩ
considering the terms with a variation in
Ak
δS=−∫1c2jkδAkdΩ+14πc∫dμFμνδAνdΩ
since
δS=0
−∫1c2jkδAkdΩ+14πc∫dμFμνδAνdΩ=0
−∫4πcjkδAkdΩ+∫dμFμνδAνdΩ=0
∫(−4πcjνδAνdΩ+dμFμνδAνdΩ)=0
∫δAνdΩ(−4πcjν+dμFμν)=0
−4πcjν+dνFνμ=0
dνFνμ=4πcjν
dνFμν=−4πcjν