ρ=Σaeaδ(r−ra)
 or 
de=ρdV
 
dxide=ρdxidV
 
dxide=ρdxidtdVdt
 
dxide=ρvidΩc
 
dxide=jidΩc
 
where 
ji=(ρc,ρvi) 
now, consider the term 
∫ecAkdxk from the action term 
∫ecAkdxk=∫1cρdVAkdxk
 
=∫1cρAkdxkdtdVdt
 
=∫1c2jkAkdΩ
 
substituting this in the action equation 
S=−∫bamcds−∫baecAμdxμ−116πc∫badΩFμνFμν
 
S=−∫mcds−∫1c2jkAkdΩ−116πc∫dΩFμνFμν
 
δS=−∫mcdvμδxμ−∫1c2δjkAkdΩ−∫1c2jkδAkdΩ−116πc∫dΩδ(FμνFμν)
 
δ(FμνFμν)=2FμνδFμν
 
=2Fμνδ(dμAν−dνAμ)
 
=2Fμν(2δdμAν)
 
=4FμνdμδAν
 
=4dμ(FμνδAν)−4dμFμνδAν
 
δS=−∫mcdvμδxμ−∫1c2δjkAkdΩ−∫1c2jkδAkdΩ−116πc∫4(dμ(FμνδAν)−dμFμνδAν)dΩ
 
considering the terms with a variation in 
Ak 
δS=−∫1c2jkδAkdΩ+14πc∫dμFμνδAνdΩ
 
since 
δS=0 
−∫1c2jkδAkdΩ+14πc∫dμFμνδAνdΩ=0
 
−∫4πcjkδAkdΩ+∫dμFμνδAνdΩ=0
 
∫(−4πcjνδAνdΩ+dμFμνδAνdΩ)=0
 
∫δAνdΩ(−4πcjν+dμFμν)=0
 
−4πcjν+dνFνμ=0
 
dνFνμ=4πcjν
 
dνFμν=−4πcjν