Skip to main content

Travelling waves and magnetic domain walls

It took a while but I finally figured out, after almost 3 days, as to how to visualize a travelling wave using the method I've been using so far  using ipywidgets on an ipython notebook! And here is the result of it. The first plot shows how the envelope of the pulse as a whole changes with change in the total number of modes added in phase and the second plot shows how the pulse moves along the x-direction in time. So far, I'm pretty happy with the incremental progress I've made and my resolve to build something on a solid foundation has strengthened over the last month. I will keep pushing this further, at whatever slow pace I can, adding more and more complexity to it. Let's see where the rise takes me.

Otherwise, the interesting thing today was the bi-monthly departmental colloquium, delivered this time around by Prof. Anil Kumar from IISc, Banglore. His research interests include spintronics, nano-magnetization, and spin polarized electron scattering. He talked about magnetic domain walls and domain wall re-engineering. It was one of the few talks that I've been able to follow from the beginning to the end of the talk, especially because he emphasized on the group's experimental results, the ideology behind performing a certain experiment and the various methods of data acquisition to understand said experiment.

After briefly talking about what magnetic domains are and the factors that determine the creation of magnetic domains in a material, he talked about the domain walls and their morphology. He talked about how their width depends on the amount of anisotropy in a material and on the magnetic exchange energy in the material. He showed us simulations of how the magnetization of a material changes due to an applied magnetic field over time, which is through the formation of magnetic domains at the edges of the material, which are aligned with the applied magnetic field, which then propagate through the material to meet at the center. All this assuming that our material is perfect and without impurities. Impurities act as locus for the formation of domains, which wouldn't be ideal. In the middle of the talk, he took a detour to talk about the need for research in this particular area, which has applications in high density and fast memory access. He talked about racetrack memory and how it can revolutionize computer memory as we know it. All in all, it was a brilliant talk, very approachable and easily understandable with any physics junior.

Popular posts from this blog

Animation using GNUPlot

Animation using GNUPlotI've been trying to create an animation depicting a quasar spectrum moving across the 5 SDSS pass bands with respect to redshift. It is important to visualise what emission lines are moving in and out of bands to be able to understand the color-redshift plots and the changes in it.
I've tried doing this using the animate function in matplotlib, python but i wasn't able to make it work - meaning i worked on it for a couple of days and then i gave up, not having found solutions for my problems on the internet.
And then i came across this site, where the gunn-peterson trough and the lyman alpha forest have been depicted - in a beautiful manner. And this got me interested in using js and d3 to do the animations and make it dynamic - using sliders etc.
In the meanwhile, i thought i'd look up and see if there was a way to create animations in gnuplot and whoopdedoo, what do i find but nirvana!

In the image, you see 5 static curves and one dynam…

on MOOCs.

For those of you who don't know, MOOC stands for Massively Open Online Course.

The internet is an awesome thing. It's making education free for all. Well, mostly free. But it's surprising at the width and depth of courses being offered online. And it looks like they are also having an impact on students, especially those from universities that are not top ranked. Students in all parts of the world can now get a first class education experience, thanks to courses offered by Stanford, MIT, Caltech, etc.

I'm talking about MOOCs because one of my new year resolutions is to take online courses, atleast 2 per semester (6 months). And I've chosen the following two courses on edX - Analyzing Big Data with Microsoft R Server and Data Science Essentials for now. I looked at courses on Coursera but I couldn't find any which was worthy and free. There are a lot more MOOC providers out there but let's start here. And I feel like the two courses are relevant to where I …

On programmers.

I just watched this brilliant keynote today. It's a commentary on Programmers and the software development industry/ecosystem as a whole.

I am not going to give you a tl;dr version of the talk because it is a talk that I believe everyone should watch, that everyone should learn from. Instead, I am going to give my own parallel-ish views on programmers and programming.
As pointed out in the talk, there are mythical creatures in the software development industry who are revered as gods. Guido Van Rossum, the creator of Python, was given the title Benevolent Dictator For Life (BDFL). People flock around the creators of popular languages or libraries. They are god-like to most programmers and are treated like gods. By which, I mean to say, we assume they don't have flaws. That they are infallible. That they are perfect.
And alongside this belief in the infallibility of these Gods, we believe that they were born programmers. That programming is something that people are born wit…