Skip to main content

setup files

I don't even remember how many times I've installed ubuntu over the last 5 years but I did it one more time last week. Installing the system got easier with time but setting up the system, installing the necessary software was my bottleneck, taking up atleast half a day. And I never bothered writing a shell script to automate this. As the saying goes, necessity is the mother of all invention, I got my ass of in december and wrote a shell script that would setup dependencies and install relevant software. I also dabbled around with modifying my .bashrc file a bit, setting up a prompt that would change in size depending on the window size. There's a lot more to do in terms of bash scripting, I've barely scratched the surface. My afternoon was spent working on numerical integration routines and I guess tomorrow will be spent writing the same in fortran and python. And on the side, I'm trying to learn how to use APIs to fetch data from websites, specifically arXiv. I didn't try hard enough the last time I looked into this. Why does it always take 2/3 times to finish something? For once, I wish I started something and see it through to completion at one go...

Popular posts from this blog

Animation using GNUPlot

Animation using GNUPlotI've been trying to create an animation depicting a quasar spectrum moving across the 5 SDSS pass bands with respect to redshift. It is important to visualise what emission lines are moving in and out of bands to be able to understand the color-redshift plots and the changes in it.
I've tried doing this using the animate function in matplotlib, python but i wasn't able to make it work - meaning i worked on it for a couple of days and then i gave up, not having found solutions for my problems on the internet.
And then i came across this site, where the gunn-peterson trough and the lyman alpha forest have been depicted - in a beautiful manner. And this got me interested in using js and d3 to do the animations and make it dynamic - using sliders etc.
In the meanwhile, i thought i'd look up and see if there was a way to create animations in gnuplot and whoopdedoo, what do i find but nirvana!

In the image, you see 5 static curves and one dynam…

Pandas download statistics, PyPI and Google BigQuery - Daily downloads and downloads by latest version

Inspired by this blog post : https://langui.sh/2016/12/09/data-driven-decisions/, I wanted to play around with Google BigQuery myself. And the blog post is pretty awesome because it has sample queries. I mix and matched the examples mentioned on the blog post, intent on answering two questions - 
1. How many people download the Pandas library on a daily basis? Actually, if you think about it, it's more of a question of how many times was the pandas library downloaded in a single day, because the same person could've downloaded multiple times. Or a bot could've.
This was just a fun first query/question.
2. What is the adoption rate of different versions of the Pandas library? You might have come across similar graphs which show the adoption rate of various versions of Windows.
Answering this question is actually important because the developers should have an idea of what the most popular versions are, see whether or not users are adopting new features/changes they provide…

Adaptive step size Runge-Kutta method

I am still trying to implement an adaptive step size RK routine. So far, I've been able to implement the step-halving method but not the RK-Fehlberg. I am not able to figure out how to increase the step size after reducing it initially.

To give some background on the topic, Runge-Kutta methods are used to solve ordinary differential equations, of any order. For example, in a first order differential equation, it uses the derivative of the function to predict what the function value at the next step should be. Euler's method is a rudimentary implementation of RK. Adaptive step size RK is changing the step size depending on how fastly or slowly the function is changing. If a function is rapidly rising or falling, it is in a region that we should sample carefully and therefore, we reduce the step size and if the rate of change of the function is small, we can increase the step size. I've been able to implement a way to reduce the step size depending on the rate of change of …