Skip to main content

New born stars and the State-of-the-art.

If large cameras and telescope capable of probing the low surface brightness objects in the sky is one end of the state-of-the-art in astronomy, the following work would be the state-of-the-art at the other end of the spectrum. While surveys focusing on looking at all of the objects in the sky, choosing speed and number of astronomical objects found over spatial resolution, there are telescopes used specifically to study objects at the highest spatial resolution.

The paper (found here) talks about a narrow, edge-on disk resolved around the star HD 106906 using the SPHERE instrument on the VLT telescope. Note that I used to word resolved and not detected. For an astronomer, those two words are vastly different. The same way dark matter is discovered but not yet observed, astronomers knew that the aforementioned star had a dusty disk around it. How you ask? Well, for starters, if you have dust in front of a light source, the light source looks dimmer. Secondly, whatever light that the dusty disk is absorbing, it re-emits at a higher wavelength (IR). This work on the other hand didn't infer the presence of the dusty disk but was in fact able to resolve it. Using advanced adaptive optics to correct for atmospheric effects, the astronomers were able to work at diffraction-limited seeing, which helped resolved the star and the dusty disk around it. The paper also talks about a planet they rediscovered around the star and they talk about what the chances are that the planet is in fact orbiting in the same plane as the disk.

It's the other end of astronomical research where people study gas clouds that are collapsing into stars, proto-stars and young stars embedded in nebulae and what not. The sheer breadth of astronomical research never ceases to amaze me and the more i read about it, the more I believe that there's a place for anyone and everyone in astronomy.

Popular posts from this blog

Animation using GNUPlot

Animation using GNUPlotI've been trying to create an animation depicting a quasar spectrum moving across the 5 SDSS pass bands with respect to redshift. It is important to visualise what emission lines are moving in and out of bands to be able to understand the color-redshift plots and the changes in it.
I've tried doing this using the animate function in matplotlib, python but i wasn't able to make it work - meaning i worked on it for a couple of days and then i gave up, not having found solutions for my problems on the internet.
And then i came across this site, where the gunn-peterson trough and the lyman alpha forest have been depicted - in a beautiful manner. And this got me interested in using js and d3 to do the animations and make it dynamic - using sliders etc.
In the meanwhile, i thought i'd look up and see if there was a way to create animations in gnuplot and whoopdedoo, what do i find but nirvana!

In the image, you see 5 static curves and one dynam…

on MOOCs.

For those of you who don't know, MOOC stands for Massively Open Online Course.

The internet is an awesome thing. It's making education free for all. Well, mostly free. But it's surprising at the width and depth of courses being offered online. And it looks like they are also having an impact on students, especially those from universities that are not top ranked. Students in all parts of the world can now get a first class education experience, thanks to courses offered by Stanford, MIT, Caltech, etc.

I'm talking about MOOCs because one of my new year resolutions is to take online courses, atleast 2 per semester (6 months). And I've chosen the following two courses on edX - Analyzing Big Data with Microsoft R Server and Data Science Essentials for now. I looked at courses on Coursera but I couldn't find any which was worthy and free. There are a lot more MOOC providers out there but let's start here. And I feel like the two courses are relevant to where I …

On programmers.

I just watched this brilliant keynote today. It's a commentary on Programmers and the software development industry/ecosystem as a whole.

I am not going to give you a tl;dr version of the talk because it is a talk that I believe everyone should watch, that everyone should learn from. Instead, I am going to give my own parallel-ish views on programmers and programming.
As pointed out in the talk, there are mythical creatures in the software development industry who are revered as gods. Guido Van Rossum, the creator of Python, was given the title Benevolent Dictator For Life (BDFL). People flock around the creators of popular languages or libraries. They are god-like to most programmers and are treated like gods. By which, I mean to say, we assume they don't have flaws. That they are infallible. That they are perfect.
And alongside this belief in the infallibility of these Gods, we believe that they were born programmers. That programming is something that people are born wit…