Skip to main content

Beyond the standard Hot big bang model

“Our whole universe was in a hot dense state,
Then nearly fourteen billion years ago expansion started. Wait …
That all started with the big bang (Bang)!”

is how the theme song of the popular TV show “The Big Bang Theory” starts.

” “Since the dawn of man” is really not that long,
As every galaxy was formed in less time than it takes to sing this song.
A fraction of a second and the elements were made …
Set in motion by the same big bang!”

“It’s expanding ever outward but one day
It will pause and start to go the other way.
Collapsing ever inward, we won’t be here, it won’t be heard
Our best and brightest figure that it’ll make an even bigger bang!”

Well, for all intents and purposes, that’s a pretty good introduction to what the postulates of the standard Hot big bang model are. That the universe started from a hot dense state and that it started expanding outwards. As it expanded, the temperature started to cool down. After a certain point matter and radiation, which were previously in equilibrium with one another, could now exist independently. The point in the expansion of the universe is referred to as the Epoch of decoupling. And we’ve come a long way since then, roughly 14 billion years, to get to where we are now. Also, that last bit in the song about a collapsing universe isn’t scientific fact any more because we are living in a flat universe, which will forever keep expanding.

(I am not going to give the balloon analogy because with the analogy comes the question what are we expanding into. And people aren’t satisfied when I say that we are expanding into nothing or that what we are expanding into doesn’t really matter (yet).)

I am not going to talk about how the Hot big bang model was triumphant in answering the questions of the day, namely the presence of a Cosmic Microwave Background radiation, the matter content of the universe and the expansion of the universe. Well, maybe later. For now, I would like to talk about some of the drawbacks of the Hot big bang model. Of the major drawbacks, I am going to focus on the Flatness (which I shall discuss here) and the Horizon (which I shall discuss later) problems and how the theory of Inflation solves them.

Before we talk about the flatness problem, let’s lay a mathematical foundation upon which we can formulate the question. For now, take my word that one of the equations that govern the expansion of the universe, referred to as the Friedmann equations, is

Note that is also referred as the Hubble parameter , is the density of our universe and is the curvature parameter. If we manipulate the equations a bit, we get

is referred to as the critical density of the universe and it is defined as

Manipulating the equation further, we get that

where is the ratio .

Note that the right hand side of the above equation is a constant and therefore the left hand side too has to be a constant as the universe evolves and expands.

Conventionally, has three components; matter, radiation and vacuum (cosmological constant). The matter density behaves as , radiation density as and the vacuum density is constant. The expansion of the universe is currently being driven by the cosmological constant but earlier, it used to be driven by radiation and matter. Therefore, during the early stages of the expansion of the universe, we can say that decreases and to keep the left hand side constant, has to increase. The equation can also be solved trivially if i.e if the density of the universe we live in, , is equal to the critical density , meaning that we live in a flat universe i.e . Astronomers have in fact observed that in the universe we live in, the value of is very close to 1.

If you think about it, there is no logical reason as to why the value of needs to be confined to . This fine tuning of the parameter and confining it’s value close to in order to satisfy the above equation is referred to as the Flatness problem. Richard Dicke was one of the first to identify this consequence of the Hot big bang model.

On the other hand, if during a certain stage of the expansion of the universe, the density of the universe driving the expansion was constant, then increases drastically meaning that will decrease. Therefore, in such a scenario, no matter what value of the universe starts with, it will eventually become . This epoch of rapid expansion of the universe is referred to as Inflation.

[1] Theme song
[2] Wiki
[3] with numbers plugged in
[4] for the more theoretically inclined

Written with StackEdit.

Popular posts from this blog

Animation using GNUPlot

Animation using GNUPlotI've been trying to create an animation depicting a quasar spectrum moving across the 5 SDSS pass bands with respect to redshift. It is important to visualise what emission lines are moving in and out of bands to be able to understand the color-redshift plots and the changes in it.
I've tried doing this using the animate function in matplotlib, python but i wasn't able to make it work - meaning i worked on it for a couple of days and then i gave up, not having found solutions for my problems on the internet.
And then i came across this site, where the gunn-peterson trough and the lyman alpha forest have been depicted - in a beautiful manner. And this got me interested in using js and d3 to do the animations and make it dynamic - using sliders etc.
In the meanwhile, i thought i'd look up and see if there was a way to create animations in gnuplot and whoopdedoo, what do i find but nirvana!

In the image, you see 5 static curves and one dynam…

on MOOCs.

For those of you who don't know, MOOC stands for Massively Open Online Course.

The internet is an awesome thing. It's making education free for all. Well, mostly free. But it's surprising at the width and depth of courses being offered online. And it looks like they are also having an impact on students, especially those from universities that are not top ranked. Students in all parts of the world can now get a first class education experience, thanks to courses offered by Stanford, MIT, Caltech, etc.

I'm talking about MOOCs because one of my new year resolutions is to take online courses, atleast 2 per semester (6 months). And I've chosen the following two courses on edX - Analyzing Big Data with Microsoft R Server and Data Science Essentials for now. I looked at courses on Coursera but I couldn't find any which was worthy and free. There are a lot more MOOC providers out there but let's start here. And I feel like the two courses are relevant to where I …

Pandas download statistics, PyPI and Google BigQuery - Daily downloads and downloads by latest version

Inspired by this blog post :, I wanted to play around with Google BigQuery myself. And the blog post is pretty awesome because it has sample queries. I mix and matched the examples mentioned on the blog post, intent on answering two questions - 
1. How many people download the Pandas library on a daily basis? Actually, if you think about it, it's more of a question of how many times was the pandas library downloaded in a single day, because the same person could've downloaded multiple times. Or a bot could've.
This was just a fun first query/question.
2. What is the adoption rate of different versions of the Pandas library? You might have come across similar graphs which show the adoption rate of various versions of Windows.
Answering this question is actually important because the developers should have an idea of what the most popular versions are, see whether or not users are adopting new features/changes they provide…